sections of the chemical shifts of $\mathrm{C}_{1} / \mathrm{H}_{1}, \mathrm{C}_{2} / \mathrm{H}_{2}, \mathrm{C}_{3} / \mathrm{H}_{3}$, and $\mathrm{C}_{4} / \mathrm{H}_{4}$.

The above application only serves as a clear illustrative example. More efficient 2D-FTNMR methods are available for correlating the chemical shifts of directly bound nuclei via J-modulated polarization transfer. ${ }^{7}$ The sequence described here is most useful when J coupling between the I and S spins is not present or is not resolved. Such a case might arise for a metal ion with nuclear $\operatorname{spin} I=1 / 2$ which is bound in a complex molecule. Protons in the vicinity of the metal ion binding site would contribute to its dipolar relaxation, and the heteronuclear 2D-NOE sequence could provide an indication of the types of protons that make up the structure of the metal ion binding site. Preliminary ${ }^{113} \mathrm{Cd}\left({ }^{1} \mathrm{H}\right)$
(7) Bax, A.; Morris, G. A. J. Magn. Reson. 1981, 42, 501.

2D-NOE studies of metalloorganic complexes indicate this is feasible.
This new heteronuclear 2D-NOE NMR experiment should be useful for identifying the structures surrounding the metal ion binding sites in complexes with organic and biological ligands. In combination with other 2D-NMR NOE experiments, ${ }^{3}$ it could provide the complete solution structure of metal ion complexes. ${ }^{15} \mathrm{~N}\left({ }^{1} \mathrm{H}\right)$ heteronuclear 2D-NOE experiments might provide information on the protons involved in exchange in compounds such as peptides.

Acknowledgment. The National Science Foundation (Grant No. CHE-80-24633) and the sponsors of the Major Analytical Instruments Facility at Case Western Reserve University are acknowledged for providing some of the funds used to purchase the Varian XL-200 NMR instrument used in these studies.

Additions and Corrections

Low-Valent Molybdenum Porphyrin Derivatives: Synthesis and Structure of a π-Bonded Diphenylacetylene Adduct of Molybdenum(II) (meso-Tetra-p-tolylporphyrin) [J. Am. Chem. Soc. 1981, 103, 1850]. Andre De Cian, Jocelyne Colin, Michel Schappacher, Louis Ricard, and Raymond Weiss*

Reference 5: The correct space group for $\mid \mathrm{MoTTP}(\mathrm{PhC} \equiv$ $\mathrm{CPh}) \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \mid$ should read P_{1} / n.

Fast Hydrolysis of Alkyl Radicals with Leaving Groups in the β Position [J. Am. Chem. Soc. 1982, 104, 7311-7312]. G. Koltzenburg, G. Behrens, and D. Schulte-Frohlinde*

Page 7311: The missing rate constant in the sixth entry of Table I is 10^{4}.

Page 7312: Formula VII in Chart I should read:

Page 7312, thirteenth line after eq 4 should read as follows: ...on substitution of H by $\mathrm{CH}_{3} \ldots$

